Skip to Content

Why Don’t Birds Get Tired When They Fly?

Many of us often say we wish we had the ability to fly because it looks so fun and calming to travel around in the air. We really mean that we would like to be able to glide and soar like a bird. That is why we go hang-gliding and use wingsuits that don’t require any physical effort. Flying, on the other hand, looks like hard work. If you were to flap your arms like a bird for a short period, they would soon feel pretty sore. So why don’t birds get tired when they fly?

Birds don’t get tired due as they manage their energy expenditure. They do this by reducing air resistance and lowering the number of wing beats. Birds also have hollow bones allowing them to fly further, and some birds can sleep while flying.

If you want to know more then please read on.

If you or someone you know loves birds then check out these great bird gifts on Amazon by clicking here

Why don’t birds get tired when they fly?

If birds became tired all the time when they flew, they wouldn’t survive. They would never have enough energy to travel between destinations, catch their prey, or outpace predators. They need to fly without any risk of fatigue, just like we would get up and walk whenever we need to. Still, a long walk can take it out of us, and there are plenty of birds that migrate for long distances.

There are a few different reasons why birds have evolved not to get tired when they fly. The reasons, and the abilities of the bird, vary between species. Often, it comes down to how often birds use the muscles in their wings and how well they take advantage of their environment. The impact of air resistance is just as important as the exertion of energy by the bird. Physical adaptations like hollow bones and larger wingspans help too.

Birds are diverse in their size, colors, diet, and other ways.  Find out more in this article I wrote

The fewer wingbeats the better.

Birds are economical with their wingbeats. They don’t actually use their wings until they have to. That is why you see such large wingspans on a lot of birds. It is much easier for birds like eagles to soar with those large wings and cover long distances without using the muscles to move them. Eagles and other prey birds will also use thermals and up-drafts to carry them up into the air to gain a better vantage point for spotting their prey. They can then circle and swoop across the hunting ground, barely beating the wings at all, before going in for a kill.

The albatross is a great example of a bird with a massive wingspan that doesn’t need to use its wings that much. There are many species, but the biggest is the Wandering Albatross, which can have a wingspan of 11 feet. This bird can travel as much as 10,000 miles in one journey, with some making it in 46 days.

This sounds incredibly tiring, but the Albatross’s wings allow it to do so without expending much energy at all. That wingspan helps, but they also use an undulating motion in the sky to rise and fall. The propulsive force of this momentum allows them to travel further without needing to flap their wings. In fact, some go hours without flapping them even once.

Want to know what the 10 smallest birds in North America are?  Find out here in an article I wrote.

Air resistance

Other seabirds will take advantage of the water to reduce drag and decrease the effort needed to fly. This is why you will see birds like cormorants flying so close to the water whenever they can. This process is called skimming.

There is an interesting phenomenon called the ground effect, where the airflow around a wing changes when it is close to a large surface. This pattern significantly reduces the drag on the wing, which means that the bird doesn’t have to use as much energy to fly. Therefore, it makes sense for birds to get as close to the water as possible and take advantage of this.

Do you know why birds of prey are great hunters?  Find out in this article I wrote.

Bald eagle

A shorter distance from the water also means less energy getting up into the air, making sense for heavier seabirds. There is even a bird called the Skimmer that takes this strategy further. Its bottom mandible is larger than the upper, and it skims the surface of the water for food.

Other birds have alternative strategies for decreasing air resistance and making it easier to fly. Geese, for example, fly in skeins that have a distinctive V formation. Birds adopt a position a just the right point behind the goose in front to feel the benefit as they fly. This benefits the whole flock as it ensures that they can reach their destination together in good time. They aren’t fighting each other to reach the destination; they want the whole family group to make it with as little energy loss as possible. You may have also seen competitive cyclists doing something similar.

Click here for the 10 most common birds of North America.

Hollow bones

It isn’t just a lack of wing beats that stops these birds from getting tired in the air. Other physiological advantages help too. Birds are very light creatures. If you have ever held a songbird on your hand to feed them, you know that they barely feel like they weigh anything at all. It is surprising how this relates to much bigger birds too. Flightless birds are the heaviest species.

One reason for this decrease in weight is their hollow bones. Bird bones are hollow and light as a simple way to lower the body weight of the bird. They can carry fat for energy during long journeys and offset this with reduced weight in their bones. The less weight there is to carry around, the easier it is for birds to stay airborne. They don’t have to flap so hard to get off the ground or to maintain their height in the air. Less strain means less energy expenditure.

In addition to this, hollow bones are also much stronger than you would imagine because of the combination of thin crossed pieces of bone. This adds strength and rigidity to the skeleton, which in turn helps when using the flight muscles. The easier it is for the birds to create a strong forward momentum, the less tired they become.

If you want to know which falcons and caracaras you can see, then click here

Energy levels

With all of this talk of massive wings and minimal wing beats, we have to take a moment to consider the hummingbird. This bird is the complete opposite. It constantly beats its wings as it travels from plant to plant and needs a lot of energy to stop it from getting too tired. It takes 70 wingbeats a second to stay airborne and a daily food intake equally three times their body weight. That rapid flight is so fast that it takes special photographic equipment to slow it down on film and see the individual beat. It all seems counterproductive to us, but there are many successful species constantly flying and feeding.

Other birds will eat on the wing to provide themselves with enough energy to keep going during long flights and migrations. Swallows will do so and eat as they fly. This gives them the energy they need to overcome fatigue and means they don’t have to stop. The quicker they get to their destination, the better. Or, they will fatten up before their journey with as much energy-rich food as possible so that they have enough fat reserve to keep them going. Birds can gorge in Europe at the end of summer and become a lot skinnier when they reach Africa.

There are some dangerous birds in North America.  Click here for this top 10 list.

Sleeping on the wing also helps.

Then some even have the ability to sleep on the wing. This is the best way to handle fatigue on a long journey. Different processes depend on the bird, but they are all extraordinary as they allow the birds to both fly and rest at the same time.

One example is the Frigate Bird. This creature travels long distances over water and can’t afford to sleep for long periods. So, it sleeps in short bursts to get rest. Researchers believe that they do so in 10-second bursts – like micro-naps – that add up to 45 minutes of sleep per day.

The strategy of the Common Swift is even more incredible. Slow-wave sleep can occur in one brain hemisphere at a time. Therefore, one half of the swift’s brain can sleep while the other stays awake for navigation and survival. There is the potential for both hemispheres to enter this state for short periods when safe, but it isn’t the best approach.

Why do birds sing in the morning?  Find out here.

Summary

As you can see, birds are so well adapted to flight that the process isn’t as tiring for them as you would expect. The strength and lightweight of their bones make forward propulsion easier. Larger wings and fewer wingbeats lower the risk of fatigue further. All those birds know how to take advantage of energy sources and their environment to manage energy expenditure. Of course, the Swift and the Albatross have this all figured out best. If you can sleep and fly at the same time, there is little to worry about.

Why don’t birds fall when they sleep?  Find out in this article I wrote.